10,016 research outputs found

    Dissolved methane pluming mapping using Membrane Inlet Mass-Spectrometry (MIMS) at a blowout site in the North Sea

    Get PDF
    A blow out site in the North Sea (well 22/4-b, UK EEZ) in a water depth of 83 m, served as a test area to demonstrate MIMS as a powerful tool for the continuous measurement of dissolved methane simultaneously to the partial pressure of carbon dioxide, nitrogen and oxygen as well as other gases. A pump-CTD arrangement was used to generate a continuous water stream through a 2.5 cm thick tube to the ship laboratory and was analyzed using a membrane inlet quadrupole mass spectrometer (GAM 200, InProcessInstruments). The pump-CTD was further equipped with calibrated HydroC CH4/CO2 sensors. The MIMS measurements were conducted under fully controlled temperature conditions and were calibrated for CH4, N2, O2, and pCO2. The pump-CTD arrangement was towed along transects across the blow out and dissolved gas concentrations as well as physical water column data were synchronized and geo-referenced. The transects were repeated in three different depth layers, including a bottom layer of � 2 m above the sea floor, 60 m above the sea floor just below the thermocline and a third plane in 10 m water depth. During the tows water samples were taken for later onboard methane analysis and cross-calibration with the MIMS and HydroC data. After data selection under consideration of the tidal regime lateral and vertical plume dimensions of dissolved methane were constructed. Dissolved methane concentrations ranged between background and up to about 18�M. Below the thermocline, which represents an effective barrier for the vertical distribution of dissolved methane, methane distinctively spreads laterally. Only at locations were the gas bubble stream and concurrently advected water from below the thermocline reaches the sea surface enhanced methane emission into the atmosphere took place

    Entanglement and secret-key-agreement capacities of bipartite quantum interactions and read-only memory devices

    Get PDF
    A bipartite quantum interaction corresponds to the most general quantum interaction that can occur between two quantum systems in the presence of a bath. In this work, we determine bounds on the capacities of bipartite interactions for entanglement generation and secret key agreement between two quantum systems. Our upper bound on the entanglement generation capacity of a bipartite quantum interaction is given by a quantity called the bidirectional max-Rains information. Our upper bound on the secret-key-agreement capacity of a bipartite quantum interaction is given by a related quantity called the bidirectional max-relative entropy of entanglement. We also derive tighter upper bounds on the capacities of bipartite interactions obeying certain symmetries. Observing that reading of a memory device is a particular kind of bipartite quantum interaction, we leverage our bounds from the bidirectional setting to deliver bounds on the capacity of a task that we introduce, called private reading of a wiretap memory cell. Given a set of point-to-point quantum wiretap channels, the goal of private reading is for an encoder to form codewords from these channels, in order to establish secret key with a party who controls one input and one output of the channels, while a passive eavesdropper has access to one output of the channels. We derive both lower and upper bounds on the private reading capacities of a wiretap memory cell. We then extend these results to determine achievable rates for the generation of entanglement between two distant parties who have coherent access to a controlled point-to-point channel, which is a particular kind of bipartite interaction.Comment: v3: 34 pages, 3 figures, accepted for publication in Physical Review

    Parallel and convergent processing in grid cell, head-direction cell, boundary cell, and place cell networks.

    Get PDF
    The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type-the place cell. We therefore suggest that parallel information processing in different classes of cells-as is typically observed at lower levels of sensory processing-continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207-219. doi: 10.1002/wcs.1272 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website
    • …
    corecore